secp256kl, ECDSA and Schnorr

January 21, 2026

0.0.1 Point, Curve and Scalar classes to define Elliptic Curve of the form y? = 23 +ax+b

[1]: from __future__ import annotations
from dataclasses import dataclass
from typing import Optional

[2]: @dataclass(frozen=True)
class Scalar:
nimnn
A scalar modulo “mod’.
Use:
- Scalar(z, p) for field elements (F_p)

- Scalar(k, n) for group scalars (mod curve order)

value: int
mod: int

def __post_init__(self):
object.__setattr__(self, "value", self.value 7 self.mod)

def __int__(self) -> int:
return self.value

def inv(self) -> "Scalar":
if self.value == O:
raise ZeroDivisionError("inverse of 0")
mod i1s prime for secp256kl field p; for group order mn also prime
return Scalar(pow(self.value, self.mod - 2, self.mod), self.mod)

def __neg__(self) -> "Scalar":
return Scalar(-self.value, self.mod)

def _coerce(self, other) -> "Scalar":
if isinstance(other, Scalar):
if other.mod != self.mod:
raise ValueError (f"Mod mismatch: {self.mod} vs {other.modl}")
return other
if isinstance(other, int):

return Scalar(other, self.mod)
return NotImplemented

def __add__(self, other) -> "Scalar":
other = self._coerce(other)
if other is NotImplemented:
return NotImplemented
return Scalar(self.value + other.value, self.mod)

def __sub__(self, other) -> "Scalar":
other = self._coerce(other)
if other is NotImplemented:
return NotImplemented
return Scalar(self.value - other.value, self.mod)

def __mul__(self, other) -> "Scalar":
other = self. coerce(other)
if other is NotImplemented:
return NotImplemented
return Scalar(self.value * other.value, self.mod)

def __truediv__(self, other) -> "Scalar":
other = self._coerce(other)
if other is NotImplemented:
return NotImplemented
return self * other.inv()

def __pow__(self, e: int) -> "Scalar":
return Scalar(pow(self.value, e, self.mod), self.mod)

[3]: @dataclass(frozen=True)
class Curve:

p: int
a: int
b: int
n: Optional[int] = None # group order (optional but useful)

def F(self, x: int) -> Scalar:
return Scalar(x, self.p)

def is_on_curve(self, P: "Point") -> bool:
if P.is_infinity(Q:
return True

x = self .F(P.x)

y = self.F(P.y)

return (y * y - (x * x * x + self.F(self.a) * x + self.F(self.b))).
wvalue ==

[4]: @dataclass(frozen=True)
class Point:
curve: Curve
x: Optional[int]
y: Optional[int]

None
None

@staticmethod
def infinity(curve: Curve) -> "Point":
return Point(curve, None, None)

def is_infinity(self) -> bool:
return self.x is None and self.y is None

def __post_init__(self):
if self.is_infinity():
return
if not (0 <= self.x < self.curve.p and 0 <= self.y < self.curve.p):
raise ValueError("Point coordinates out of field range")
if not self.curve.is_on_curve(self):
raise ValueError("Point is not on the curve")

def __neg__(self) -> "Point":
if self.is_infinity(Q):
return self
return Point(self.curve, self.x, (-self.y) % self.curve.p)

def __add__(self, Q: "Point") -> "Point":
P = self
if P.curve != Q.curve:
raise ValueError("Cannot add points from different curves")

if P.is_infinity(:
return Q

if Q.is_infinity():
return P

p = P.curve.p
xl, y1 = P.x, P.y
x2, y2 = Q.x, Q.y

P + (-P) = infinity
if x1 == x2 and (y1 + y2) % p == O:
return Point.infinity(P.curve)

F = P.curve.F

if P 1= Q:

lam = (F(y2) - F(y1)) / (F(x2) - F(x1))
else:
tangent slope (3z72 + a) / (2y)
lam = (F(3) * F(x1) * F(xl1) + F(P.curve.a)) / (F(2) * F(y1))

x3
y3

lam * lam - F(x1) - F(x2)
lam * (F(x1) - x3) - F(y1)

return Point(P.curve, int(x3), int(y3))

def __sub__(self, Q: "Point") -> "Point":
return self + (-Q)

def __rmul__(self, k: int) -> "Point":
scalar multiplication: k * P
if not isinstance(k, int):
return NotImplemented

if self.is_infinity():
return self

If curve order known, reduce k mod n for convenience
if self.curve.n is not None:
k 7= self.curve.n

if k == 0:

return Point.infinity(self.curve)
if k < O:

return (k) * (-self)

R = Point.infinity(self.curve)
addend = self

while k:
if k & 1:
R = R + addend
addend = addend + addend
k >>= 1

return R

0.0.2 Defining the SECP256K1 Curve

Parameters are defined here: https://www.secg.org/sec2-v2.pdf

[5]: SECP256K1_P
SECP256K1_A

2%xx256 - 2*%*x32 - 977
0

SECP256K1_B
SECP256K1_N

7
OxFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6GAF48A03BBFD25E8CD0364141

Generator (base point)

SECP256K1_GX =,
-55066263022277343669578718895168534326250603453777594175500187360389116729240

SECP256K1_GY =,
-32670510020758816978083085130507043184471273380659243275938904335757337482424

secp = Curve(p=SECP256K1_P, a=SECP256K1_A, b=SECP256K1_B, n=SECP256K1_N)
G = Point(secp, SECP256K1_GX, SECP256K1_GY)
INF = Point.infinity(secp)

assert secp.is_on_curve(G)

assert (SECP256K1_N * G).is_infinity()
assert (1 * G) ==

assert (2 * G) == (G + @)

assert (G + (-G)).is_infinity()

0.0.3 Generating a Public/Private Keypair

[6]: import secrets

def random_private_key(curve: Curve) -> int:
while True:
d = secrets.randbelow(curve.n)
Uniform in [1, n-1]
if 1 <= d < curve.n:
return d

def public_key_from_private(d: int, G: Point) -> Point:
if not (1 <= d < G.curve.n):
raise ValueError("Invalid private key range")
return d * G

d = random_private_key(secp)
print ("Private Key:", hex(d))

P = public_key_from_private(d, G)
print (£"Public Key: ({hex(P.x)},{hex(P.y)})")

Private Key: 0x66db07ed5£81441c4c6a975cdebe9b128d1a9b02005e28084bb1050215c22b99
Public Key: (0xe8979a44449b78b9c7d159562bb658605b22d9a1456£4395d60b846£63c998d0,
0x278de61d7c39b12£1b10075dd568ccOfed6cf5cf£5a00850d6e€9a8060384fda)

[7]: | # Serialization Format for Public Keys (SEC1, not a BIP)
x = P.x.to_bytes(32, "big")

[8]:

y = P.y.to_bytes(32, "big")

uncompressed = b"\x04" + x + y
print ("Uncompressed Public Key: Ox" + uncompressed.hex())

compressed_prefix = b"\x03" if (P.y & 1) else b"\x02"
compressed = compressed_prefix + x
print ("Compressed Public Key: Ox" + compressed.hex())

Uncompressed Public Key: 0x04e8979a44449b78b9c7d159562bb658605b22d9a1455£4395d60
b846£63c998d0278de61d7c39b12f1b10075dd568cc0fed6cf5cff5a00850d6ee9a8060384fda
Compressed Public Key:
0x02e8979a44449b78b9c7d159562bb658605b22d9a1455£4395d60b846£63c998d0

0.0.4 Elliptic Curve Digital Signature Algorithm (ECDSA)
ECDSA Signing Algorithm s=k"!(z+rd) mod n

e s = Signature’s s-point
e k = Deterministic Nonce
— Can’t be reused or Private Key d leaks
— Deterministic digital signature RFC6979 used by Bitcoin to protect us from this, where
k= fn(d,z)
o z = Message to be signed (hashed via sigops)
e 1 = Signature’s r-part, x-coordinate of R = kG
e d = Private Key

The Public Key P = dG

The actual signature is (r, s)

import hmac
import hashlib
from typing import Tuple

def bits2int(b: bytes, gqlen: int) -> int:
""NRFC6979 bitslint: take leftmost gqlen bits of b, interpret as int."""
i = int.from_bytes(b, "big")
blen = len(b) * 8
if blen > qglen:
i >>= (blen - glen)
return i

def int2octets(x: int, rolen: int) -> bytes:
"""RFC6979 int2octets: encode int T as rolen bytes big-endian. """
return x.to_bytes(rolen, "big")

def bits2octets(b: bytes, q: int, rolen: int) -> bytes:
"MURFCE9T79 bits2octets. """

def

z1 = bits2int(b, q.bit_length())
z2 =2z1Y%q
return int2octets(z2, rolen)

rfc6979_generate_nonce(d: int, z: int, n: int) -> int:
nimnn

Deterministically generate ECDSA nonce k using RFC6979 + HMAC-SHAZ56.

Inputs:
d: private key (1..n-1)
z: message hash as integer (usually 256-bit, e.g. sha256(msg))
n: curve order

Output:
k in [1..n-1]
if not (1 <=d < n):
raise ValueError("Invalid private key d")
glen = n.bit_length()
holen = 32 # SHA256 output length in bytes
rolen = (qlen + 7) // 8

Convert inputs
bx = int2octets(d, rolen)
bz = bits2octets(z.to_bytes(32, "big"), n, rolen)

Step B
V = b"\x01" * holen
Step C
K = b"\x00" * holen

def hmac_sha256(key: bytes, data: bytes) -> bytes:
return hmac.new(key, data, hashlib.sha256).digest()

Step D

K = hmac_sha256(K, V + b"\x00" + bx + bz)
Step E

V = hmac_sha256 (K, V)

Step F

K = hmac_sha256(K, V + b"\x01" + bx + bz)
Step G

V = hmac_sha256(K, V)

Step H
while True:
T = Db""
while len(T) < rolen:

V = hmac_sha256(K, V)
T +=V

k = bits2int(T, qlen)
if 1 <=k < n:
return k

K
v

hmac_sha256(K, V + b"\x00")
hmac_sha256 (K, V)

[9]: def ecdsa_sign(z: int, d: int, G: Point) -> Tuple[int, int]:
Sign a message hash interpreted as integer z.
Returns (r, s) as integers in [1, n-1].

mmnn

n = G.curve.n

if n is None:

raise ValueError("Curve must have order n")
if not (1 <= d < n):

raise ValueError("Invalid private key d")

z =2z % n # message should also be mod n

while True:
Random Nonce (fine for learning but not production because what 1 f
wnonce reused because of randomness?)
k = secrets.randbelow(n)
RFC6979 Deterministic Nonce
k = rfc6979_generate_nonce(d, z, n)

R=k *G
if R.is_infinity(): continue

r=R.x%n
if r == 0: continue

k_inv = Scalar(k, n).inv().value
s = (k_inv * (z + T *d)) %n

if s == 0: continue

This ts NOT a point on the curve, just a tuple of signature wvalues
return (r, s)

[10]: import hashlib

msg = b"Satoshi Nakamoto is everywhere"

[10]:

[11]:

[12]:

z = int.from_bytes(hashlib.sha256(msg) .digest(), "big")

ecdsa_sign(z, d, G)

(100152184108366984890303104940864049914791486390339255436185776490785798557454,
113500030669257307105211891168802504449007931918099992694904885078096013136713)

As we are using deterministic monce, every sign will be exactly the same
assert ecdsa_sign(l, d, G) == ecdsa_sign(1l, d, G)

ECDSA Verification Algorithm
1. Verify r € [1,n—1], s € [1,n — 1]
2. w=s"! modn (exists because s # 0
3. u; = zwmod n uy, = rw mod n
4. X = u G+ uyP (reject if X = O, point at infinity)
5. v=X, modn

The signature is valid iff v = r

Proof why ECDSA verfication works Motivation: Reconstruct kG without knowing k

s =k 1(z+rd) mod n = ks = z+rd mod n = k = s 1(2+rd) mod n = k = w(z+rd) mod n = k =
zw~+rdw mod n = k = uy +uyd mod n = kG = (u; +uyd)G mod n = kG = u;G +uy(dG) mod n
= kG = u;G + uy P mod n

Verifier computes the RHS of this equation. If you recall, from the signing steps, R = kG. We
match the x-coordinate to check the validity of the signature.

R, =X,

def ecdsa_verify(z: int, sig: Tuple[int, int], P: Point, G: Point) -> bool:
nimnn
Verify ECDSA signature (r,s) for message hash integer z agatinst public key,
~P.
nimnn
r, s = sig
n = G.curve.n
if n is None:
raise ValueError("Curve must have order n")

if P.is_infinity() or (P.curve != G.curve):
return False

if not (1 <=r < n and 1 <= s < n):
return False

z =2z /, n # message should be mod n

s_inv = Scalar(s, n).inv() .value

ul
u2

(z * s_inv) % n
(r * s_inv) % n

X = (ul * G) + (u2 * P)
if X.is_infinity():
return False

return (X.x % n) ==r

[13]: z =1
ecdsa_verify(z, ecdsa_sign(z, d, G), P, G)

[13]: True

ECDSA Nonce Reuse (Issue #1) If one use the same k again for another ECDSA signature,
then private key d is leaked.

s =k Y(z+rd) mod n = sk =2+ rd mod n

Now, suppose you sign s; and s, with the same nonce k.

1k = z; + rd mod n s,k = z5 + rd mod n

Subtract:

(5 —89)k = (2 —2y) modn = k= (2, — 25)(57 — 85) L mod n
And once k is known,

Private Key d = (sk — z)r~! mod n

ECDSA Signature Malleability (Issue #2) A valid ECDSA signature (r,s) can be trans-
formed into another valid one:

(rys) = (r,n—2s)

Both, verify.

[14] : | def malleable_execution(z):
sig = ecdsa_sign(z, d, G)
r, s = sig

n = secp.n

Low s
sl = s
if s1 >n // 2:
sl =n - si
sig_low_s = (r, sl1)

10

High s
s2 = s
if s2 <=n // 2:
s2 = n - s2
sig_high_s = (r, s2)

print("Malleable signatures for same 'z' off low/high s, z =", z)
print (hex(sig_low_s[0]), hex(sig_low_s[1]), "lo")
print (hex(sig_high_s[0]), hex(sig_high_s[1]), "hi")

if sig == sig_low_s: print("Original: low s")
else: print("Original: high s")

return (sig_low_s, sig_high_s)

malleable_execution(secp.n // 2);

Malleable signatures for same 'z' off low/high s, z =
57896044618658097711785492504343953926418782139537452191302581570759080747168
0xfaff26648e90600edaldbfd7ce2£0012a15e982614784d578e3c646533a7ae44
0x296b54b53b9940£e94bcb47231135d9b55668595861431e3935b48fec62faf78 lo
0xfaff26648e90600edaldbfd7ce2£0012a15e982614784d578e3c646533a7ae44
0xd694ab4ac466bf016b434b8dceeca2636548575129346e582¢77158e0a0691c9 hi
Original: low s

[15]: |z =1

Generating both the low-s and high-s signatures for the same message
sig_low_s, sig_high s = malleable_execution(z)

Low & High s - both wverifies
print("Low-s Signature Verification:", ecdsa_verify(z, sig_low_s, P, G))
print("High-s Signature Verification:", ecdsa_verify(z, sig_high_s, P, G))

Malleable signatures for same 'z' off low/high s, z =1
0x972e74ee34136e8f15bbdaeff1522501£c15536271872a0a6c011a4£d1£98bdb
0x7£11c7a36d4fb7752c1bbb3e20e28ee8bba8caf1£4a237ce24b34805cfcf8b28 lo
0x972e74ee34136e8f15bbdaeff1522501fc15536271872a0a6c011a4£d1£98bdb
0x80ee385c92b0488ad3e494c1df1d7116050611f4baa6686d9b1f16870066b619 hi
Original: low s

Low-s Signature Verification: True

High-s Signature Verification: True

0.0.5 Reasons Bitcoin moved away from ECDSA (towards Schnorr / Taproot)

1. Transaction ID Malleability: (pre- SegWit) Before SegWit, the transaction ID was
computed as: txid = sha256d(serialized transaction)

11

[16]:

and the serialization included scriptSig, which contains the signature bytes. So any mutation to
signature bytes could change the txid even though the spend remained valid.
a) DER encoding malleability (non-canonical encodings)

o The same mathematical ECDSA signature (r, s) could be encoded in multiple valid (but
non-canonical) ways in DER
e This allowed third parties to mutate signature bytes, and therby mutate txid

It was fixed by BIP66 (Strict DER encoding) (consensus rule).

b) s-value malleability (high-s / low-s) For any valid signature (r,s), this is also valid: (r, n
-S)

This produces a different signature that still verifies, again allowing txid mutation pre-SegWit.
Mitigated by enforcing low-S signatures as policy/standardness (often discussed in context of
BIP62), and later enforced more strictly for SegWit spends.

c) SegWit solved it structurally SegWit moved signatures into the witness, so: - txid no

longer commits to signatures - malleability no longer breaks txid-based chaining

Fixed by SegWit (BIP141) at the protocol level.

2. Nonce Fragility / Leaking Private Key (discussed above)
3. No clean key aggregation - not Linear like Taproot

4. Weird signature malleability vectors

5. No batch verification possible like Schnorr

0.0.6 Schnorr Signature
Schnorr Signing Algorithm

1. P=dGmodnIf P isodd, flipd=n—d

2. Generate nonce k deterministically. &k = fn(d,m) by using BIP340 tagged hashes (and
optional aux randomness).

3. R=kG mod n If R, is odd, flip nonce k =n —k

4. Compute Challenge e e = H(R,, P,,m) mod n

5. Signature s = k 4+ ed mod n

The signature is (R_x, s).

o Public Key is stored as 32 byte x-coordinate of P, because y-coordinate can be determined
because it’s even.
o BIP340 Serialization: 64 byte => rx(32) || s(32)

import hashlib
from typing import Tuple

12

[17]: import hashlib
from enum import Enum

class BIP340Tag(str, Enum):
AUX = "BIP0340/aux"
NONCE = "BIP0340/nonce"
CHALLENGE = "BIP0340/challenge"

def tagged_hash(tag: BIP340Tag, msg: bytes) -> bytes:
BIP340 tagged hash:
SHA256 (SHA256 (tag) || SHA256(tag) || msg)
mnimn
tag_hash = hashlib.sha256(tag.value.encode("ascii")) .digest()
return hashlib.sha256(tag_hash + tag_hash + msg) .digest()

[18]: from typing import Optional, Tuple

def schnorr_sign(z: int, d: int, G: Point, aux: Optional[bytes] = None) ->
~Tuple[int, int]:

nimnn

BIP340-style Schnorr sign on secpl56k1.

Inputs:
z: message (expects 32-byte message in BIP340; here we encode int -> 32,
sbytes)
d: private key integer (1..n-1)
G: generator point

Output:
(rz, s) where:

re: z-coordinate of R (int, 0..p-1)

s : scalar (int, 0..n-1)
n = G.curve.n
if n is None:

raise ValueError("Curve must have order n")
if not (1 <= d < n):

raise ValueError("Invalid private key d")

message as 32 bytes (BIP340 expects 32-byte msg)
m= (z % (1 << 256)).to_bytes(32, "big")

def enforce_even_y_when _multiplied(k: int, G: Point) -> Tuple[int, Point]:

nmnn

Compute R = kx*G.
If R has odd y, negate both: k <- n—-k, R <- —-R so that Ry becomes even.

13

R=k *x G
if R.is_infinity(:
raise RuntimeError("Invalid point: infinity")
if (R.y & 1) == 1: # odd y
return (n - k) % n, -R
return k % n, R

1) Public key and "even-y" convention:

P = dG. If Py is odd, use d' = n-d and P' = -P (same z, even y).
d_eff, P = enforce_even_y_when_multiplied(d, G)

px = P.x.to_bytes(32, "big")

d_eff_bytes = d_eff.to_bytes(32, "big") # 0..n-1 fits in 32 bytes

2) Deterministic nonce k with tagged hash and optional aux randomness
if aux is None:

aux = b"\x00" * 32
if len(aux) != 32:

raise ValueError("aux must be exactly 32 bytes")

aux_hash = tagged_hash(BIP340Tag.AUX, aux)
t = bytes(a ~ b for a, b in zip(d_eff_bytes, aux_hash))

kO = int.from_bytes(tagged_hash(BIP340Tag.NONCE, t + px + m), "big") % n
if k0 == 0:
raise RuntimeError("Unlucky: derived k is O; choose different aux or

omessage")

3) R = kG, enforce even-y for R
k, R = enforce_even_y_when_multiplied(k0, G)
rx_bytes = R.x.to_bytes(32, "big")

4) Challenge e = H(rz || pz [/ m) mod n
e = int.from_bytes(tagged_hash(BIP340Tag.CHALLENGE, rx_bytes + px + m),

<—>"big") % n

#5) s =k + exd_eff mod n
s=(k +ex*xdeff) n

Signature is (rz, s) with rz as the z-coordinate integer
return (R.x, s)

[19]: schnorr_sign(1l, d, G)

[19]: (39836057919412435847140014597710287468357009319972349163940291975844716737627,
43971663946341611215525666085042447717984519607815484791784896323587200557401)

14

[20]: =z =1
assert schnorr_sign(z, d, G) == schnorr_sign(z, d, G)

aux = secrets.token_bytes(32)
assert schnorr_sign(z, d, G, aux) == schnorr_sign(z, d, G, aux)

aux2 = secrets.token_bytes(32)
assert schnorr_sign(z, d, G, aux) != schnorr_sign(z, d, G, aux2)

Schnorr Verification Algorithm Given: - Curve generator point G, group order n, field prime
p - Message m (32 bytes) — in our code we map your z:int to m = bytes32(z) - X-only public
key p, € [0,p — 1] (32-byte x-coordinate) - Signature ¢ = (r,,s) where: - r, € [0,p — 1] is the
x-coordinate of the nonce point R - s € [0,n — 1]

1. Verify r, € [0,p — 1], s € [0,n — 1]
2. Lift the x-only public key

Compute P = lift_x(p,), where lift_x returns the unique curve point with x-coordinate p,
and even y-coordinate:

o Compute y? = p2 +7 (mod p)

o Find y = +/p2 + 7 (mod p) (reject if no square root exists)
e Ifyisodd, set y < p—y

« Output P = (p,,y)

Reject if P does not exist.
3. Compute the challenge

e=H (bytes32(r,) || bytes32(p,) || m) mod n

challenge
where:
H palienge (7) = tagged__hash("BIP0340/challenge", z)
4. Reconstruct R from the verification equation
Schnorr verification equation:
sG = R+eP
Rearranged to compute R’:
R = sG —eP
Reject if R” = O (point at infinity).
5. Check canonical conditions

The signature is valid iff:

. R; is even
/ J—
® Rz - rm

15

Proof why Schnorr Verification works From signing, s = k + ed mod n
Multiplying G on both sides and substituting P = dG and R = kG,

= sG = (k+ed)G = sG =kG+e(dG) = sG =R+eP = R = sG—eP
—= R=s5G+(n—e)P

So R, =1, and (by construction in signing) R, is even.

[21]: from typing import Optional, Tuple

def sqrt_mod_p_secp256ki(a: int, p: int) -> Optionall[int]:
mnimn
secp256kl prime satisfies p /4 4 == 3, so sqrt can be computed by:
y = a~((p+1)//4) mod p
Returns y 4if it exists, else Nomne.
a%l=p
if a ==
return O
y = pow(a, (p + 1) // 4, p)
if (y xy) % p != a:
return None
return y

def lift_x(curve: Curve, x: int) -> Optional[Point]:
BIP3/0 lift_z: given z, return the curve point (xz,y) with EVEN y, if ity
~exrtsts.
nimnn
p = curve.p
if not (0 <= x < p):
return None

#y=2=x3+ 7modp (secp256kl: a=0, b=7)
rhs = (pow(x, 3, p) + curve.b) 7 p
y = sqrt_mod_p_secp256kil(rhs, p)
if y is Nonme:
return None

choose even y
if y & 1:
y=pP~7v
try:
return Point(curve, x, y)

except ValueError:
return None

16

[22]: def schnorr_verify(z: int, px: int, sig: Tuplel[int, int], G: Point) -> bool:
nmnn
Verify BIP3/0-style Schnorr signature for message "z~ (int mapped to 32,
wbytes),

z-only public key “pz, and signature (rz, s).
mnimn

n G.curve.n
p = G.curve.p
if n is None:

raise ValueError("Curve must have order n")
rx, s = sig

1) Range checks

if not (0 <= rx < p):
return False

if not (0 <= s < n):
return False

2) Lift z-only pubkey to even-y point
P = lift_x(G.curve, px)
if P is Nonme:

return False

m = bytes32(z)

m= (z % (1 << 256)).to_bytes(32, "big")
rx_bytes = rx.to_bytes(32, "big")
px_bytes = px.to_bytes(32, "big")

3) Challenge e

e = int.from_bytes(
tagged_hash(BIP340Tag.CHALLENGE, rx_bytes + px_bytes + m),
"big",

) hn

4) R' = sG - eP = sG + (n-e)P
R=(s*G + ((n-e) *P)

if R.is_infinity(Q:
return False

5) Check canonical conditions

if R.y & 1) == 1: # must be even-y
return False

if R.x != rx:
return False

17

return True

[23]:]z =1
schnorr_verify(z, P.x, schnorr_sign(z, 4, G), G)

[23]: True

Signatures with different aux values verify

[24]: z =1
auxl = secrets.token_bytes(32)
aux2 = secrets.token_bytes(32)
sigl = schnorr_sign(z, d, G, auxl)
sig2 = schnorr_sign(z, d, G, aux2)
assert sigl != sig2

assert schnorr_verify(z, P.x, sigl, G)
assert schnorr_verify(z, P.x, sig2, G)

Check ECDSA-style low/high-s malleability does NOT apply to Schnorr (BIP340
style)
[25]: d

random_private_key(secp)
public_key_from_private(d, G)

av]
Il

z =1
sig = rx, s = schnorr_sign(z, d, G)

print("verify(sig):", schnorr_verify(z, P.x, sig, G))

Attempt ECDSA-style malleation: (rz, n-s)
n = secp.n
sig_flip = (rx, (n - s) % n)

print("verify(sig_flip):", schnorr_verify(z, P.x, sig_flip, G))

verify(sig): True
verify(sig_flip): False
0.0.7 Footnotes

e Two algebra “worlds” exist:

— Field arithmetic in [, (mod p): used for point addition formulas; modular inverses exist
for all non-zero elements
— Group arithmetic on the curve E(F,): point addition and scalar multiplication

e A point does not have a “modular inverse”. The inverse defined for a point is its group
inverse: —P = (z,—y mod p) So that, P + (—P) = @, point at infinity

18

Division by a point is not defined. Expressions like P! or Q/P do not make sense in
elliptic curve group operations

Scalar inverses exist modulo n: a~! mod n exists iff a # 0. This is why ECDSA requires
modular inverses (of k and s)

ECDSA nonce fragility is catastrophic: Random nonce k is okay for learning, but unsafe
in production because:

— If the same k is reused even once, the private key d can be recovered
— Biased or partially leaked nonces can also leak d (lattice/HNP style attacks)

RFC6979 exists to remove RNG dependence for ECDSA.
It makes nonce generation deterministic: k& = f(d, z) reducing risk from weak system ran-
domness

ECDSA “low-s / high-s” malleability:
If (r, s) is valid, then (r,n —s) is also valid. This is called ECDSA signature malleability
/ s-value malleability

DER signature encoding was not invented by a BIP
Bitcoin inherited ASN.1 DER ECDSA encoding conventions (OpenSSL/X9.62-style)

BIP66 enforced strict DER encoding (consensus)
Multiple byte encodings that parsed to the same (r, s) used to be accepted; strict DER made
the encoding canonical

Transaction malleability was a third-party mutation issue.
Before SegWit, the signature bytes lived in scriptSig — changing valid encodings could
change the txid without needing the user to re-sign

SegWit was not only a “malleability fix”, but it structurally fixed txid malleability by
moving signatures into witness, enabling:

— stable txids for chained protocols (e.g. Lightning)
— effective block capacity increase (weight)
— a cleaner upgrade path (witness versions)

Schnorr signatures (BIP340) remove a lot of encoding pain:

— fixed 64-byte signatures (r,,s)
— no DER encoding required
— no ECDSA-style low/high-s malleability in the same way

BIP340 uses x-only pubkeys 4+ even-y convention:

— Public keys are represented by x(P) only.
— The full point is recovered via lift_ x, choosing the even y solution. This makes signa-
tures canonical and avoids ambiguity.

Tagged hashes are fixed constants in BIP340 for domain separation:

— BIP0340/aux
— BIP0340/nonce
— BIP0340/challenge

19

e aux randommness is signer-only and not needed for verification.
It is optional 32-byte CSPRNG input to harden nonce derivation against side-channels; the
verifier never receives or checks it.

e Why Schnorr enables MuSig-like constructions:
Schnorr has linear structure: s = k + ed (mod n) which is the algebraic foundation of mul-
tisignatures and key aggregation — but real MuSig requires nonce coordination and rogue-key
protections (so it can’t be done by just “adding signatures” naively).

20

	Point, Curve and Scalar classes to define Elliptic Curve of the form y^2 = x^3 + ax + b
	Defining the SECP256K1 Curve
	Generating a Public/Private Keypair
	Elliptic Curve Digital Signature Algorithm (ECDSA)
	Reasons Bitcoin moved away from ECDSA (towards Schnorr / Taproot)
	Schnorr Signature
	Footnotes

